K3 Surfaces with Nine Cusps

نویسنده

  • W Barth
چکیده

By a K3-surface with nine cusps I mean a surface with nine isolated double points A 2 , but otherwise smooth, such that its minimal desingularisation is a K3-surface. It is shown, that such a surface admits a cyclic triple cover branched precisely over the cusps. This parallels the theorem of Nikulin, that a K3-surface with 16 nodes is a Kummer quotient of a complex torus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of K3 Surfaces with Nine Cusps

By a K3-surface with nine cusps I mean a compact complex surface with nine isolated double points A2, but otherwise smooth, such that its minimal desingularisation is a K3surface. In an earlier paper I showd that each such surface is a quotient of a complex torus by a cyclic group of order three. Here I try to classify these K3-surfaces, using the period map for complex tori. In particular I sh...

متن کامل

Projective Models of K3 Surfaces with an Even Set

The aim of this paper is to describe algebraic K3 surfaces with an even set of rational curves or of nodes. Their minimal possible Picard number is nine. We completely classify these K3 surfaces and after a careful analysis of the divisors contained in the Picard lattice we study their projective models, giving necessary and sufficient conditions to have an even set. Moreover we investigate the...

متن کامل

N ov 2 00 6 PROJECTIVE MODELS OF K 3 SURFACES WITH AN EVEN SET

The aim of this paper is to describe algebraic K3 surfaces with an even set of rational curves or of nodes. Their minimal possible Picard number is nine. We completely classify these K3 surfaces and after a carefull analysis of the divisors contained in the Picard lattice we study their projective models, giving necessary and sufficient conditions to have an even set. Moreover we investigate th...

متن کامل

ar X iv : 0 90 1 . 03 69 v 3 [ m at h . A G ] 3 S ep 2 00 9 ON COX RINGS OF K 3 - SURFACES

We study Cox rings of K3-surfaces. A first result is that a K3surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3-surfaces of Picard number two, and explicitly compute the Cox rings of generic K3-surfaces with a non-symplectic involution that have Picard number 2 to 5...

متن کامل

K 3 Surfaces with Involution , Equivariant

In [59], we introduced an invariant of K3 surfaces with involution, which we obtained using equivariant analytic torsion. This invariant gives rise to a function on the moduli space of K3 surfaces with involution and is expressed as the Petersson norm of an automorphic form characterizing the discriminant locus. In this paper, we study the structure of this automorphic form. Under certain assum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008